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Cadmium-113 Nuclear Magnetic Resonance Studies 
of Metalloproteins. 1. [113Cd]Concanavalin A: 
A Preliminary Investigation 

Sir: 

Recent developments in multinuclear Fourier transform 
(FT) NMR techniques2-5 have given researchers the capability 
of using a variety of NMR nuclei as probes to investigate 
chemical and biological systems. One application of interest 
is the use of metal nuclides as probes of metal-protein inter­
actions in metalloproteins and enzymes. The native metals 
found in these proteins have, in general, poor high resolution 
NMR characteristics but may in many cases be replaced by 
metals with more favorable properties. One substitute nuclide 
with excellent NMR properties is 113Cd. Several studies have 
been published that have investigated the 113Cd NMR of a 
variety of inorganic and organometallic models systems.6-10 

More recently, Armitage and co-workers11'13 have investigated 
the 113Cd NMR of Cd(II) substituted alkaline phosphatases, 
human and bovine carbonic anhydrase B. Two of these me­
talloproteins are similar in that each has basically the same 
symmetry around the metal site (four coordinate or tetrahe-
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Figure 1. (a) 113Cd NMR spectrum of concanavalin A to which 2 equiv 
of 113Cd Ch per monomer have been added to the previously apoprotein. 
The same is 2.1 mM in Con A protomer. The buffer used in these experi­
ments is 0.2 M NaCl, 50 mM NaAc, pH* 5.2, with D2O added to provide 
an internal lock. The experimental conditions used to obtain all spectra 
shown follow: flip angle, 45°; recycle time, 0.6 s; spectral window, 10 000 
Hz; number of data points collected, 8192. These spectra typically require 
70 000 transients. The variations in signal-to-noise ratio within this figure 
denote differences in total accumulation times and the concentrations of 
the various samples. A 5-kHz enlargement of the spectra is displayed with 
8 Hz of line broadening for sensitivity enhancement. Resonances occur 
at 68,43, and -125 ppm. (b) 113Cd NMR spectrum of Con A containing 
2 equiv of 113Cd(II) and an excess of Ca(II). The sample is 2.3 mM in Con 
A protomer. The resonance occurs at 41 ppm. (c) 113Cd NMR spectrum 
of Con A containing 2 equiv of 113Cd(II) and an excess of Zn(II). The 
sample is 1.6 mM in Con A protomer. The resonance is at 68 ppm. 

dral) and, for each protein, three of the ligands binding the 
metal are nitrogen; bovine carbonic anhydrase may be pen-
tacoordinate. Despite these similarities, the reported 113Cd 
chemical shifts of these proteins are in a range of over 160 ppm. 
Sudmeier12 has also investigated the 113Cd NMR of Cd(II) 
human carbonic anhydrase B with findings that differ con­
siderably from the former work. The difference in the chemical 
shifts reported is 80 ppm. The origin of this chemical shift 
difference is unclear at the present time. In any case, the sen­
sitivity of 113Cd NMR as a probe of metal environment has 
been clearly demonstrated. 

We wish to report here preliminary results of a 113Cd FT 
NMR study of the protein concanavalin A (Con A). This lectin 
has been of great interest owing to its ability to agglutinate 
transformed cells selectively in regard to the normal parent 
cells.14 In addition, it specifically binds saccharide moieties15 

and induces blastogenesis in lymphocytes.16 Several reviews 
have appeared concerning the structure and function of Con 
A.17 Con A requires two metals per monomer for saccharide 
binding activity. In the native protein this consists of Mn(II) 
occupying a site denoted Sl and Ca(II) occupying a site de­
noted S2.18'19 Both of these metals may be removed and re­
placed with Cd(II) with saccharide binding activity retained.20 

In addition, there are other metal binding site(s) reported for 
Con A, although none of these site(s) have been shown to bind 
Cd(II).21 113Cd NMR should be able to resolve the number 
and type of Cd(II) binding sites. Also, any changes in the metal 
environment upon binding of saccharide to Cd(II) Con A 
should be reflected in the 113Cd NMR. 

Figure la presents a 113Cd NMR spectrum of [113Cd]Con 
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Figure 2. 113Cd NMR spectrum of Con A containing 2 equiv of 113Cd(II) 
and 1 equiv of methyl a-D-mannopyranoside. The sample is 1.6 mM in 
Con A protomer. The resonances occur at 43 and -131 ppm. 

A. In this experiment enough "3Cd has been added to the 
apoprotein to occupy in excess of 90% of both the Sl and S2 
sites. It is clear that cadmium is found in three different en­
vironments, with resonances occurring 68, 43, and —125 ppm 
from an external sample of 0.1 M Cd(ClO^.2 2 Since in the 
native protein only two Cd(II) binding sites (Sl and S2) have 
been reported, further experimentation was done to assign 
these resonances. 

Preliminary investigation of this system makes two points 
clear. First, the spectra obtained are independent of the amount 
of "nicked" subunit present in the Con A preparations.23 

Secondly, none of the resonances are due to "free" Cd(II); that 
is, Cd(II) not bound in some way to the protein. Figure lb 
depicts the ' 13Cd NMR spectrum of Cd(II) Con A in which 
the S2 sites are blocked by an excess of Ca(II), while Figure 
Ic is a similar spectrum where only the Sl sites are blocked, 
in this case by an excess of Zn(II). The resonance at 68 ppm 
is therefore assigned to the S2 binding site, while the resonance 
at 43 ppm corresponds to Cd(II) in the Sl binding site. The 
absence of the resonance at —125 ppm in both of the above 
experiments would indicate that the site associated with this 
resonance may either bind Cd(II), Ca(II), and Zn(II), or that 
this third binding site is not available in mixed metal proteins. 
Further experiments to be described elsewhere indicate that 
the latter explanation is correct.25 

Further characterization of the resonance at — 125 ppm was 
carried by performing a Pb(II) competition experiment. From 
x-ray data21a Pb(II) is known to bind Con A at sites distinct 
from the Sl and S2 sites. A preparation of Con A containing 
2 equiv of Cd(II) and 1 equiv of Pb(II) per protometer yields 
a 113Cd spectrum showing the loss of the resonance at —125 
ppm indicating that either Pb(II) binds at this site or that the 
site is unavailable in the presence of Pb(II). Further experi­
ments using 207Pb NMR are currently in progress to confirm 
this point. 

Finally, the ' ' 3Cd NMR spectrum of Cd(II) Con A in the 
presence of methyl a-D-mannopyranoside was obtained. This 
saccharide specifically binds to Con A.24 Two changes are 
noted in this spectrum, shown in Figure 2, when compared with 
Figure la: the resonance at 68 ppm has disappeared, while the 
resonance at —125 ppm has shifted to higher shielding by 8 
ppm. To confirm that the resonance at 43 ppm remains that 
of the Sl site, the experiment was repeated using a Ca(II)-
2Cd(II) Con A preparation. These experiments confirmed the 
identity of the resonance at 43 ppm is due to Cd(II) in the Sl 
site. It is obvious that the Cd(II) in the S2 site has been labil-
ized by the presence of saccharide. These observations suggest 
that similar processes would occur in the native protein. Sac­
charide binding thus appears to involve a conformation change 
in the S2 binding site with a resulting destabilization of the 
metal binding in the S2 site. Recent x-ray studies by Edelman 
and co-workers27 confirms that such conformational changes 
occur within the metal binding region of Con A when a mo­
nosaccharide binds. A more detailed analysis of this data and 

other experiments on Con A will be presented in a later pub­
lication.25 
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